

GaN-on-Silicon for 5G Radios

Timothy Boles – MACOM Technology Solutions May 7, 2019

Bringing together the entire microelectronics supply chain™

Agenda

Introduction to 5G

- Why 5G
- 3G to 4G to 5G Transition
- Frequencies Microwave & mmW
- > Impact on Device Technologies
 - 4G Imcumbent LDMOS/GaN
 - 5G Future GaN/GaAs/Silicon CMOS/SiGe & Massive MIMO Implications
 - RF System Operating Voltage & Technology Impact
- > GaN Revolution for 5G
 - Market vs Price
 - GaN-on-Silicon vs GaN-on SiC
 - Supply Chain
- Future Expectations/Possibilities

Introduction to 5G 3G -> 4G -> 5G Transistions

- Faster Data Rates
- Internet Connectivity
- > Lower Latency
- > Video
- > Robotics
- > Automotive
- > Medical/Emergency Services
- All Require Substantial Increase in Bandwidth => Higher Frequencies

3G/4G Technology Trends

> 3G/4G Systems

- Silicon LDMOS has been Incumbent Technology
- Historical Operating Voltage 50 volts
- GaN has been Eroding Market Share Since 2015
- > 4G Dominated by Macro Base Stations
 - Internally Matched Transistors in a Doherty Configuration
 - Operating Voltage 50 volts Minimum
 - Final Stage Power Levels: 000's of Watts
 - Majority of applications 2.6 GHz and below
 - Very High Volume LDMOS Bands: 900MHz / 1800 MHz
 - GaN Making Significant Market Penetration

5G Technology Trends

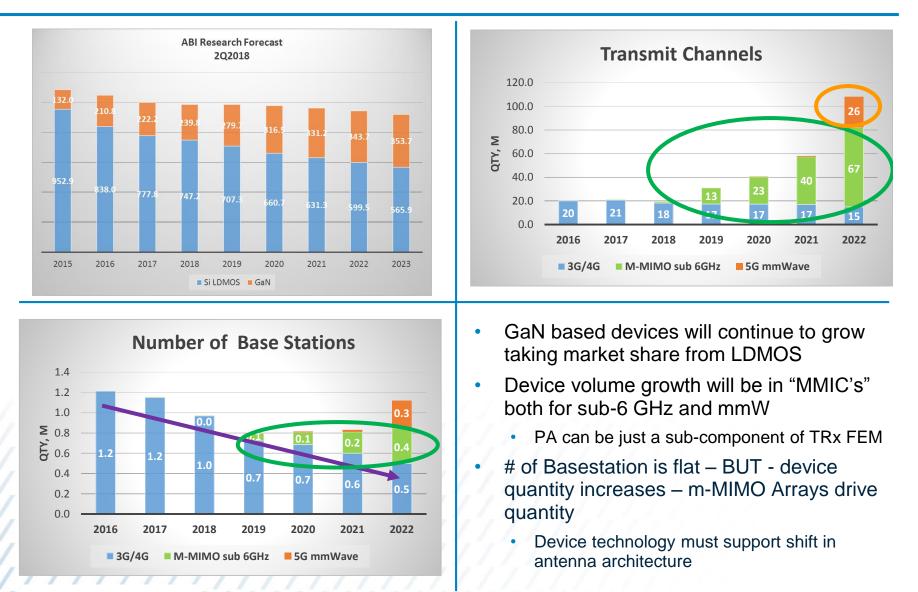
> 5G Sub–6GHz

- Initial Roll-Out Higher Frequency Version of 4G
- Device Requirement Tens to Hundreds of Watts
- 3.5 GHz 4.9 GHz Bands Will be Populated First
- Antenna Technology Massive MIMO Arrays
- Longer Term mmW Bands 28 GHz, 39 GHz, 60 GHz
- Operating Voltage Function of Frequency 50 volts -> 40 volts -> 28 volts
- Maximize Overall System Efficiency
- LMOS Cannot Meet Frequency Response at >24 volts
- GaAs Limited to ≈10 volt Operation
- GaN is the ONLY Device Technology Choice

5G Technology Trends

- > 5G Moving to MIMO Antenna Configurations (from 2x2 to 8x8 and bigger)
 - Looks/Functions like a Phased Array Radar
 - Higher Frequencies/More Bandwidth
 - Power levels are dropping: $P_{avg} \sim 5-10W P_{peak} \sim 40 50W$
 - Multistage Device ("MMIC") Integrated Driver and Final Stage
 - Approaches: (1) True MMIC, (2) MMIC + Output IPD, (3) Hybrid Construction
 - Output Stage is still Doherty configuration
 - Packaging: QFN and Laminate
 - MMIC Volume and TAM (\$) will exceed Discrete Transistors significantly

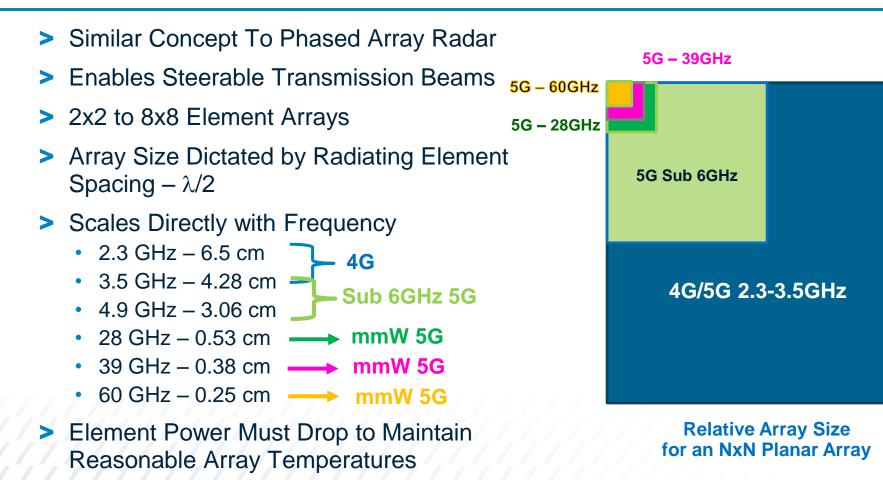
mmW 5G Systems - MMICs



> mmW

- 28 GHz/39 GHz (Ka Band)
 - Multi-Beam Phase Shift Base Station Sites MIMO/Pico Cells
 - System Efficiency => Higher Operating Voltages
 - PA Output Power Significantly Reduced Few Watts
 - MMICs
 - Lower Voltage 15 volts-28 volts? Increase f_T
 - SAT Comm/DBS Adjunctcicy Issue
 - Open Frequency Allocations
 - LDMOS Eliminated at these Frequencies
 - GaAs Possible Competitor Requires Significant Voltage Reduction
- 60 GHz (V Band)
 - Multi-Beam Phase Shift Base Station Sites MIMO
 - PA Output Power Significantly Reduced << 1 Watt
 - Low Operating Voltage
 - Open Frequency Allocation
 - SiGe/BiCMOS MMICs
 - Integrate Control Circuitry

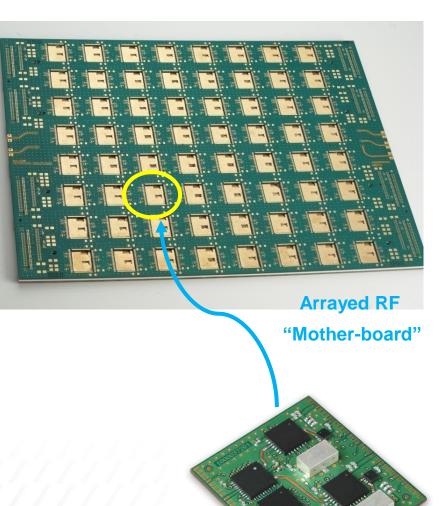
A Transistor Market or MMIC Market?


FY17 MACOM Estimates

Massive MIMO Implications

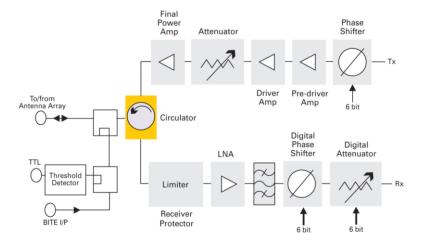
Why MMICs MIMO Planar Antenna Arrays

- Individual TR MMIC/Module Must Fit within the Horizontal Array Spacing
- > MMIC Integration is Key Esp mmW Solutions


T/R Module

- > Radiating Element Spacing
 - λ/2
 - S-Band => $\lambda/2 \approx 5$ cm
 - Relatively Large Array Spacing
 - Simplifies T/R Module Realization
 - Custom MMICs Individually Plastic Packaged
 - Modular PCB Integration

> T/R Module Concept


- Overall Dimensions ≈ 3.0 cm x 3.5 cm
- Easily Fits into Required Array Spacing
- Land Grid Array
- Solder Tab I/O
- PCB Five Layer Design
- Includes All DC, RF and Control Signal Routing
- Solder Reflow Insertion onto RF "Motherboard"
- Approach Applies Directly to Lower Frequencies

T/R Module

Why MMICs for mmW MIMO Typical Transmit/Receive MMICs/Module

- > Transmit
 - Phase Shifter
 - Pre-Driver/Driver Amplifier
 - Attenuator
- > HPA
 - Final Transmit Power to Radiating Elements
- > Receive
 - Phase Shifter
 - LNA
 - Limiter
 - Attenuator
 - Band Pass Filter
- Common Leg Circuit Concepts
 - Enables Phase Shifter/Attenuator to be Utilized in Both T_x and R_x
- > Isolation
 - Circulator/High Power/Isolation Switch
 - SPDT Switch
- > Control Circuitry
 - Digital Control in CMOS
 - Converts Serial Bit Stream for T_X and R_X Phase & Attenuation to Parallel Outputs
 - Control Capability to Determine Transmit State

Basic RF Transmit/Receive Module

Block Diagram

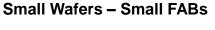
GaN Revolution for 5G

- Only GaN-on-Silicon/GaN-on-Silicon MMICs at 5G Frequencies Can Meet ALL the Performance/Supply Chain Challenges
- Market vs Price
- > GaN-on-Silicon vs GaN-on SiC
- > New Rules/Challenges
- Supply Chain
- > Future Expectations/Possibilities

The 5G GaN Revolution

> Driving GaN to Mainstream Commercial Adoption

> GaN-on-SiC


- Small Diameters
- Small, Boutique FABs
- Limited Ability to Scale

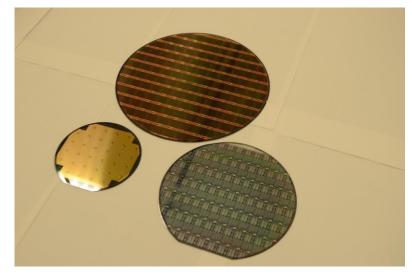
> GaN-on-Silicon

- Large Wafer Diameters
- Leverage High Volume Silicon
 - Processing Capability/Discipline
 - Supply Chain Robustness
 - Cost Structure
- Path to Full CMOS Silicon Integration

GaN Must Compete on BOTH Cost and Performance to Win in the Market!!

GaN Performance at LDMOS Prices!!

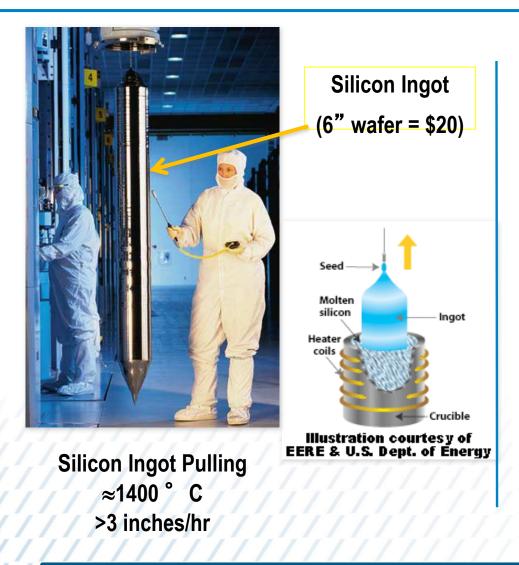
Defense


Markets

Motivation for GaN-on-Silicon Industrialization

- > Market Opportunities Everything Begins Here
- Price Drives Volume Volume Drives Cost
- > High Volume MOSFET Silicon Fab
- Volume Capabilities of Typical CMOS Fab
 - Thousands of Wafers/Week
 - Wafer Diameter 150mm (6") -> 200mm (8") -> 300mm (12")
 - Cycle Times
 - Many Mask/Process Steps per Week
 - Provides Surge Capacity Smooth Out Market Fluctuations
- Price/Cost Drivers
 - GaN/Si Existing Silicon Volume Spreads
 Overhead Costs
 - Large Wafer Diameters 2.25x/4x/9x Increases in Die Count
 - High Line Yield

100mm - 150mm - 200mm GaN/Si Wafers

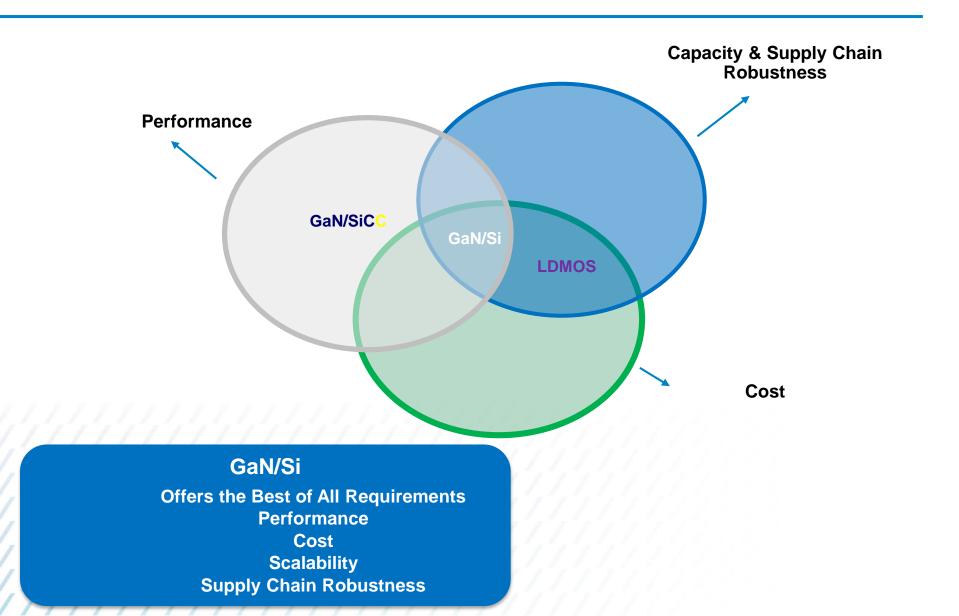

Market	Typical Device	Price Point
Aerospace and Defense	Broadband, High Efficiency, MMIC HPA • 10 – 1000 W • 28/48 V operation	\$2.00 – \$5.00/Watt
CATV	Low Frequency, Broadband, High Linearity	\$0.5 – \$1.00
Infrastructure	Discrete Power Transistors	\$0.15 - \$0.30/Watt

- > The lowest cost solution *always* wins in the marketplace
- > So If Silicon can do Silicon will win
- > So If Silicon can't & GaAs can GaAs will win
- > GaN needs to provide unique solutions & provide compelling value to win

Silicon vs. SiC Wafer

Substrate Production

SiC Ingot (6" wafer = \$6000)



High Temperature (>2000°C) PVT SiC Ingot Growth Reactor 100μm/hr - 200μm/hr

3000 Si wafers from a single ingot vs. < 100 SiC wafers from a SiC "ingot"

GaN/Si Positioning

GaN Future Directions

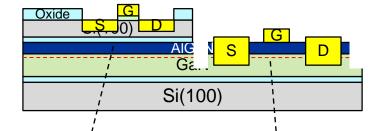
> Happening NOW!!

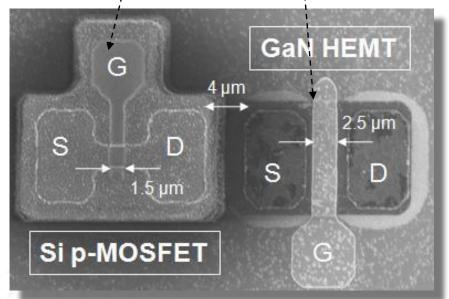
> GaN-on-Silicon - Integrated in Large Diameter, High Volume, Silicon Fab

- Needs "Large" Silicon Fab Partners
- "Large" = 150mm/200mm Diameter 3000 15,000 wfs/wk

> Process Must Adapt

- Gold Free Processing Aluminum/Copper Based Metallization
- Dielectric Crossovers
- Deep UV Steppers
- Hands Off, Cassette-to-Cassette Processing
- NO Recycles Process Must Work First Time/Every Time


150 mm (6 inch) GaN/Si wafer (Power MOS Fab) with HF/RF/μW HEMT Devices


200 mm (8 inch) GaN/Si wafer (CMOS Fab) with HF/RF HEMT Devices

GaN Future Directions

- Integration of III-V HEMTs and Si (100) MOSFETs
- High power digital-to-analog converters (DACs)
- On-wafer wireless transmitters
- Driver stages for on-wafer optoelectronics
- Power amplifiers coupled to Si linearizer circuits
- High speed (high power) differential amplifiers
- Normally-off power transistors
- New enhancement-mode power transistors
- Buffer stages for ultra-low-power electronics

Conclusions

Silicon is the MOST Mature, Defect-Free, Lowest Cost Substrate for Solid State Applications

Only GaN/Si can be Scaled to ≥200mm Wafer Fabs & Meet the Volume Ramp Requirements for BTS and RFE Market Adoption

GaN/Si A&D Devices have Demonstrated Similar/Superior Performance to Equivalent GaN/SiC Devices

GaN/Si RFE Devices have Demonstrated Superior Efficiency, PAE Flatness, with Virtually Identical Output Power and Gain to LDMOS devices

GaN/Si Uniquely Enables Homogeneous Integration with CMOS

GaN/Si is Ideally Suited to Service Volume/Basestation RF Markets